Engineering
Engineering, 13.03.2020 05:56, Koriunaa

(a) Calculate the fraction of atom sites that are vacant for copper (Cu) at its melting temperature of 1084°C (1357 K). Assume an energy for vacancy formation of 0.90 eV/atom. (b) Repeat this calculation at room temperature (298 K). (c) What is ratio of /N(1357 K) and /N(298 K)?

answer
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:20, luisgonz5050
Find the kinematic pressure of 160kpa. for air, r-287 j/ kg k. and hair al viscosity of air at a temperature of 50°c and an absolute (10 points) (b) find the dynamic viscosity of air at 110 °c. sutherland constant for air is 111k
Answers: 3
image
Engineering, 04.07.2019 18:20, rbgrh9465
An open feedwater heater operates at steady state with liquid entering at inlet 1 with t? = 40°c and pl = 1 .2 mpa. water vapor att2-200°c and p2 = 1.2 mpa enters at inlet 2. saturated liquid water exits with a pressure of pa 1.2 mpa. neglect heat transfer with the surroundings and all kinetic and potential energy effects, determine the mass flow rate of steam at inlet 2 if the mass flow rate of liquid water at inlet 1 is given as 2 kg/s.
Answers: 3
image
Engineering, 04.07.2019 19:10, gabigalvis1091
What is the main objective of using reheat rankine cycle?
Answers: 3
image
Engineering, 04.07.2019 19:10, jimena15
10 kg of co2 is initially contained at 400 kpa and 300 k. the gas constant for carbon dioxide is 189 j/lkg k) and has a specific heat ratio, k, of 1.289. isentropic expansion then occurs until the pressure is 200 kpa. a) determine the initial volume of co2 in m. b) determine the final temperature in k. c) determine the work done by the system during the expansion kl.
Answers: 2
Do you know the correct answer?
(a) Calculate the fraction of atom sites that are vacant for copper (Cu) at its melting temperature...

Questions in other subjects:

Konu
Mathematics, 07.07.2019 14:00