Physics
Physics, 25.07.2019 19:30, deaishaajennings123

The musical note a above middle c has a frequency of 440 hz. if the speed of the sound is known to be 350 m/s, what is the wavelength of this note?

answer
Answers: 1

Other questions on the subject: Physics

image
Physics, 21.06.2019 22:50, Jasten
A23 kg log of wood begins from rest, 300 m up a sluice (a water track used to transport logs, think of it as an inclined plane with negligible friction) inclined at 20° to the horizontal. after it reaches the flat waterway at the bottom it collides elastically with a 100 kg block of wood initially at rest near the base of the incline. (a) how long does it take the 23 kg log to travel down the incline? (b) what is the speed of the 23 kg log at the bottom of the incline? (c) what are the velocities of both blocks of wood after the collision? (d) what is the total kinetic energy before the collision? (e) what is the kinetic energy of the 23 kg log after the collision? (f) what is the kinetic energy of the 100 kg block of wood after the collision? (g) what is the total kinetic energy after the collision? (h) compare the total initial and total final kinetic energies. is this consistent with what you would expect for elastic collisions? explain!
Answers: 1
image
Physics, 22.06.2019 00:30, Hellopeople233
Aball tossed vertically upward from the ground next to a building passes the bottom of a window 1.8 s after being tossed and passes the top of the window 0.20 s later. the window is 2.0 m high from top to bottom. what was the ball's initial velocity? the unit vector j^ is directed upward. how far is the bottom of the window from the launch position? how high does the ball rise above the launch position?
Answers: 1
image
Physics, 22.06.2019 01:30, kadinmorgan
In a thunderstorm, charge builds up on the water droplets or ice crystals in a cloud. thus, the charge can be considered to be distributed uniformly throughout the cloud. for the purposes of this problem, take the cloud to be a sphere of diameter 1.00 kilometer. the point of this problem is to estimate the maximum amount of charge that this cloud can contain, assuming that the charge builds up until the electric field at the surface of the cloud reaches the value at which the surrounding air breaks down. this breakdown means that the air becomes highly ionized, enabling it to conduct the charge from the cloud to the ground or another nearby cloud. the ionized air will then emit light due to the recombination of the electrons and atoms to form excited molecules that radiate light. in addition, the large current will heat up the air, resulting in its rapid expansion. these two phenomena account for the appearance of lightning and the sound of thunder. take the breakdown electric field of air to be eb=3.00ă—106n/c. part a estimate the total charge q on the cloud when the breakdown of the surrounding air is reached. express your answer numerically, to three significant figures, using ďµ0=8.85ă—10â’12c2/(nâ‹…m2) .
Answers: 2
image
Physics, 22.06.2019 10:00, xojade
How many times did thomas edison mess up the light bulb
Answers: 1
Do you know the correct answer?
The musical note a above middle c has a frequency of 440 hz. if the speed of the sound is known to b...

Questions in other subjects: