Physics
Physics, 18.07.2019 09:30, oof5221

Assuming thermal equilibrium and neglecting air loss, determine the absolute internal pressure of the air when it is cold.

answer
Answers: 1

Other questions on the subject: Physics

image
Physics, 22.06.2019 02:00, LadyHolmes67
The motor m applies a time-varying force of f (200 t) n, where t is in seconds. box b with mass 200 kg starts from rest, and the coefficients of kinetic and static friction are 0.2 and us 0.3 the acceleration due to gravity is g 9.8 m/s2 b 300 a) find the time ' when the box starts to move. b) calculate the speed of the crate at 3 s c) calculate the power delivered by the motor at t 3 s
Answers: 3
image
Physics, 22.06.2019 15:00, koranbutterton
Astudent throws a water balloon with speed v0 from a height h = 1.76 m at an angle θ = 21° above the horizontal toward a target on the ground. the target is located a horizontal distance d = 9.5 m from the student’s feet. assume that the balloon moves without air resistance. use a cartesian coordinate system with the origin at the balloon's initial position. (a) what is the position vector, rtarge t, that originates from the balloon's original position and terminates at the target? put this in terms of h and d, and represent it as a vector using i and j. (b) in terms of the variables in the problem, determine the time, t, after the launch it takes the balloon to reach the target. your answer should not include h. (c) create an expression for the balloon's vertical position as a function of time, y(t), in terms of t, vo, g, and θ. (d) determine the magnitude of the balloon's initial velocity, v0, in meters per second, by eliminating t from the previous two expressions.
Answers: 3
image
Physics, 22.06.2019 19:30, rprest00
Amass m = 74 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius r = 18.4 m and finally a flat straight section at the same height as the center of the loop (18.4 m off the ground). since the mass would not make it around the loop if released from the height of the top of the loop (do you know why? ) it must be released above the top of the loop-the-loop height. (assume the mass never leaves the smooth track at any point on its path.) 1. what is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? 2. what height above the ground must the mass begin to make it around the loop-the-loop? 3. if the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? 4. if the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the final flat level (18.4 m off the ground)? 5. now a spring with spring constant k = 15600 n/m is used on the final flat surface to stop the mass. how far does the spring compress?
Answers: 3
image
Physics, 22.06.2019 20:00, naomicervero
How are positive ions different from neutral atoms
Answers: 1
Do you know the correct answer?
Assuming thermal equilibrium and neglecting air loss, determine the absolute internal pressure of th...

Questions in other subjects:

Konu
Mathematics, 11.12.2020 08:30
Konu
Mathematics, 11.12.2020 08:30
Konu
Mathematics, 11.12.2020 08:30