Physics
Physics, 06.05.2021 15:10, yazzyv05

Ashton the ant is crawling on the still blade of a ceiling fan when the fan is turned on, causing Ashton to go for a ride. If Ashton sits on the fan blade at a distance of 0.80 m from the center of the fan and turns with a frequency of 1.2 Hz, a) How fast does Ashton spin? b) If Ashton slips off the spinning fan, describe the path he will take?

answer
Answers: 1

Other questions on the subject: Physics

image
Physics, 22.06.2019 03:30, zahradawkins2007
As part of an industrial process, air as an ideal gas at 10 bar, 400k expands at steady state through a valve to a pressure of 4 bar. the mass flow rate of air is 0.5 kg/s. the air then passes through a heat exchanger where it is cooled to a temperature of 295k with negligible change in pressure. the valve can be modeled as a throttling process, and kinetic and potential energy effects can be neglected. (a) for a control volume enclosing the valve and heat exchanger and enough of the local surroundings that the heat transfer occurs at the ambient temperature of 295 k, determine the rate of entropy production, in kw/k. (b) if the expansion valve were replaced by an adiabatic turbine operating isentropically, what would be the entropy production? compare the results of parts (a) and (b) and discuss.
Answers: 3
image
Physics, 22.06.2019 10:10, Fionaauggies
How will the system respond to a temperature increase?
Answers: 1
image
Physics, 22.06.2019 12:00, drivinghydra
Aboat radioed a distress call to a coast guard station. at the time of the call, a vector a from the station to the boat had a magnitude of 45.0 km and was directed 15.0° east of north. a vector from the station to the point where the boat was later found is = 30.0 km, 15.0° north of east. what are the components of the vector from the point where the distress call was made to point where the boat was found? in other words, what are the components of vector c = b - a?
Answers: 3
image
Physics, 22.06.2019 20:50, dorkygirl
An ideal otto cycle has a compression ratio of 8. at the beginning of the compression process, air is at 95 kpa and 27°c, and 750 kj/kg of heat is transferred to air during the constant-volume heat-addition process. assuming constant specific heats at room temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle. (4390 kpa, 1730 k; 423 kj/kg; 56.4%; 534 kpa)
Answers: 1
Do you know the correct answer?
Ashton the ant is crawling on the still blade of a ceiling fan when the fan is turned on, causing As...

Questions in other subjects:

Konu
Spanish, 10.09.2020 02:01