Physics
Physics, 30.03.2021 14:00, slim2077

A stone of mass 5g was lowered in to a solution of terpentine of relative density 1.6.if the relative density of stone is 2.0 .calculate the mass of the turpentine displaced by the stone.​

answer
Answers: 1

Other questions on the subject: Physics

image
Physics, 21.06.2019 17:30, Xavier2712
Abatter hits the baseball a with an initial velocity of v0 = 110 ft/sec directly toward fielder b at an angle of 23° to the horizontal; the initial position of the ball is 2.2 ft above ground level. fielder b requires 0.44 sec to judge where the ball should be caught and begins moving to that position with constant speed. because of great experience, fielder b chooses his running speed so that he arrives at the “catch position” simultaneously with the baseball. the catch position is the field location at which the ball altitude is 8.4 ft. determine the velocity of the ball relative to the fielder at the instant the catch is made.
Answers: 1
image
Physics, 21.06.2019 22:30, droidd133
Fft review: linspace, fs, fftshift, nfft 1. generate one second of a cosine of w,-10hz sampled at f, = 100hz and assign it to x. define a tt as your time axis 2. take 64 points fft. 3. as you remember, the dft (which the fft implements) computes n samples of s2t where k-0,1,2, n -1. plot the magnitude of this 64-points fft at range 0 to 63, what do you think of this graph? 4â·to get the x-axis into a hz-frequency form, plot this 64-points fft between-50 to 50 (the 100hz sampling rate) and have n-points between them. 5. according to your figure, what frequency is this cosine wave at? 6. remember that the fft is evaluating from 0 to 2ď€. we are used to viewing graphs from-ď€ to ď€. therefore, you need to shift your graph. 7. now according to your shifted graph. what frequency is this at? 8. note that the spikes have long drop-offs? try a 1024-point dft. note that the peak is closer to 10 and the drop-off is quicker. although, now sidelobes are an issue
Answers: 2
image
Physics, 22.06.2019 08:40, Hazeleyes13
An isolated conducting spherical shell carries a positive charge. part a which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? electric potential inside the shell is constant and outside the shell is changing as 1/r2 both the electric potential and the electric field does change with r inside and outside the spherical shell electric potential inside and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is equal to zero electric field inside and outside the shell is constant (does not change with the position r), but is not equal to zero electric field inside and outside the shell is changing as 1/r (where r is the distance from the center of the sphere) electric field inside is equal to zero and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is changing as 1/r electric field inside and outside the shell is changing as 1/r2 electric field inside is equal to zero and outside the shell is changing as 1/r2 electric field inside and outside the shell is zero electric field inside is constant and outside the shell is changing as 1/r
Answers: 3
image
Physics, 22.06.2019 10:00, Trinhphuongtran
One object has a mass of 1 kg and another object has a mass of 3 kg. if the speeds are the same, which of the following is true about their kinetic energy?
Answers: 2
Do you know the correct answer?
A stone of mass 5g was lowered in to a solution of terpentine of relative density 1.6.if the relativ...

Questions in other subjects: