Physics
Physics, 25.02.2021 23:00, 10040816

A 4.00 kg object is moving at 5.00 m/s NORTH. It strikes a 6.00 kg object that is moving WEST at 2.00 m/s. The objects have a completely inelastic (stick together) collision. The velocity of the 4.00 kg object after the collision is

answer
Answers: 1

Other questions on the subject: Physics

image
Physics, 22.06.2019 06:00, tylorroundy
Aball is thrown upward. at a height of 10 meters above the ground, the ball has a potential energy of 50 joules (with the potential energy equal to zero at ground level) and is moving upward with a kinetic energy of 50 joules. what is the maximum height h reached by the ball? consider air friction to be negligible. 1. h ≈ 10 m 2. h ≈ 50 m 3. h ≈ 30 m 4. h ≈ 40 m 5. h ≈ 20 m 003 10.0 points which of the two object shown below has the greatest kinetic energy? a m b 1 2 m v 2v 1. kinetic energies are the same. 2. a 3. b 4. unable to determine. 004 10.0 points tim, with mass 74.6 kg, climbs a gymnasium rope a distance of 3.1 m. the acceleration of gravity is 9.8 m/s 2 . how much potential energy does tim gain? answer in units of j. 005 10.0 points a car is moving at 64 miles per hour. the kinetic energy of that car is 5 × 105 j. how much energy does the same car have when it moves at 111 miles per hour? answer in units of j. 006 10.0 points an 102 kg man climbs up a 1 m high flight of stairs. the acceleration of gravity is 9.81 m/s 2 . w
Answers: 3
image
Physics, 22.06.2019 09:40, alyssa32900
(a) assume the equation x = at^3 + bt describes the motion of a particular object, with x having the dimension of length and t having the dimension of time. determine the dimensions of the constants a and b. (use the following as necessary: l and t, where l is the unit of length and t is the unit of time.) (b) determine the dimensions of the derivative dx/dt = 3at^2 + b. (use the following as necessary: l and t, where l is the unit of length and t is the unit of time.)
Answers: 1
image
Physics, 22.06.2019 10:30, gyexisromero10
Air is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. air enters the heat exchanger at 95 kpa and 20°c at a rate of 0.6 m^3/s. the combustion gases (cp = 1.10 kj/kg°c) enter at 160°c at a rate of 0.95 kg/s and leave at 95°c. determine the rate of heat transfer to the air and its outlet temperature.
Answers: 2
image
Physics, 22.06.2019 11:30, msjuly723
If forces acting on an object are unbalanced. true or false
Answers: 1
Do you know the correct answer?
A 4.00 kg object is moving at 5.00 m/s NORTH. It strikes a 6.00 kg object that is moving WEST at 2.0...

Questions in other subjects: