Physics
Physics, 18.07.2020 19:01, lovelifekristy

1. a) What equal amount of positive charge would have to be placed on the Earth and on the Moon to neutralize their gravitational attraction? b) Why don’t you need to know the lunar distance to solve this problem? c) How many kilograms of hydrogen ions (that is, protons) would be needed to provide the positive charge calculated in part a?

answer
Answers: 3

Other questions on the subject: Physics

image
Physics, 22.06.2019 01:00, jayycruz59
An object is 10. cm from the mirror, its height is 3.0 cm, and the focal length is 2.0 cm. what is the image height? (indicate the object orientation by including the + or - sign with the answer.) hi = cm +1.33 -1.33 +0.75 -0.75
Answers: 2
image
Physics, 22.06.2019 07:30, anonymous1813
Some material consisting of a collection of microscopic objects is kept at a high temperature. a photon detector capable of detecting photon energies from infrared through ultraviolet observes photons emitted with energies of 0.3 ev, 0.5 ev, 0.8 ev, 2.0ev, 2.5ev, and 2.8ev. these are the only photon energies observed. (a) draw and label a possible energy-level diagram for one of the microscopic objects, which has four bound states. on the diagram, indicate the transitions corresponding to the emitted photons. explain briefly. (b) would a spring–mass model be a good model for these microscopic objects? why or why not? (c) the material is now cooled down to a very low temperature, and the photon detector stops detecting photon emissions. next, a beam of light with a continuous range of energies from infrared through ultraviolet shines on the material, and the photon detector observes the beam of light after it passes through the material. what photon energies in this beam of light are observed to be significantly reduced in intensity (“dark absorption lines”)? explain briefly.
Answers: 3
image
Physics, 22.06.2019 14:00, 6224968918
Select for each of the following statements whether it is correct or incorrect. (a) in an isothermal expansion of an ideal gas. (b) the temperature remains constant. (b) the pressure remains constant. (c) there is work done by the gas. (d) there is heat added to the gas. (e) the change in internal energy equals zero.
Answers: 1
image
Physics, 22.06.2019 22:00, lex1kkkk
The inside surface of a cylindrical-shaped cave of inner diameter 1.0 m is continuously covered with a very thin layer of water. the cave is very long and it is open on both ends. the water on the cave surface is at a constant temperature of 15.5 °c. the cave is constantly exposed to wind such that 15.5 °c air flows through the cave at 4.5 m/s. the kinematic viscosity of the air is 14.66 x 10-6 m2/s and the molecular diffusion coefficient of water vapor in the air is 0.239 x 10-4 m2/s. because the cave diameter is so large, the flow of wind down the length of the cave, in the x direction, can be treated like it is external flow and the cave surface can be approximated as flat where appropriate. calculate the x value, in a) the transition to turbulent flow occurs at rex meters, where the air flow transitions from laminar to turbulent along the inside surface of the cave b) calculate the x value, in meters, where the bulk steady state concentration of water vapor in the air flowing in the cave is 10% of the saturation concentration. assume the air at the surface of the water layer is 100% saturated with water vapor. assume the wind entering the cave contained no moisture before it entered the cave. take into account the transition from laminar to turbulent flow when solving part b
Answers: 1
Do you know the correct answer?
1. a) What equal amount of positive charge would have to be placed on the Earth and on the Moon to n...

Questions in other subjects:

Konu
Mathematics, 09.12.2019 03:31
Konu
Mathematics, 09.12.2019 03:31