Physics
Physics, 16.03.2020 18:41, dodieoddle

An object of mass m is lowered at constant velocity at the end of a string of negligible mass. As it is lowered a vertical distance h, its gravitational potential energy changes by ∆Ug = −m g h. However, its kinetic energy remains constant, so that if we define E = K + Ug, we find ∆E = −m g h. Why isn’t the total energy E conserved? 1. Because the universe is accelerating in its expansion, the object is actually at rest and not descending ... the earth moves away as fast as it moves "down." 2. An external force is doing work on the system. 3. In reality, all objects are massless, so that m = 0 and ∆E = 0. 4. The acceleration of the system is zero. 5. The net force on the system is not zero. 6. Ug is defined incorrectly as if gravity were a constant force. 7. The total energy is indeed conserved, since ∆E = ∆Ug. 8. E is useless in real-world examples like this.

answer
Answers: 2

Other questions on the subject: Physics

image
Physics, 22.06.2019 03:00, iyanistacks50
Lymphocytes known as blastocysts make antibodies that fight infection. select the best answer from the choices provided t f
Answers: 2
image
Physics, 22.06.2019 11:30, gsls6165
(1 point) match the differential equations and their vector valued function solutions. you may wish to multiply at least one solution out fully, to make sure that you know how to do it. you can get the other answers quickly by process of elimination and just multiply out one row element.
Answers: 2
image
Physics, 22.06.2019 12:30, madlenserlipepu1o
Hydrogen atoms are excited by a laser to the =4n=4 state and then allowed to emit. what is the maximum number of distinct emission spectral lines (lines of different wavelengths) that can be observed from this system? 8 6 2 7 4 5 1 3 calculate the wavelength of the 4⟶14⟶1 transition. =λ=
Answers: 2
image
Physics, 22.06.2019 15:00, lolweapon
10 points! will mark brainiest! in a heat engine if 1,000 j of heat enters the system and the piston does 500 j of work, what is the final internal energy of the system if the initial energy was 2,000 j 1: write the equation2: list out your known variables 3: plug the numbers into the equations 4: solve 5: write your solution statement that includes initial energy and final energy added you so much!
Answers: 2
Do you know the correct answer?
An object of mass m is lowered at constant velocity at the end of a string of negligible mass. As it...

Questions in other subjects: