Physics
Physics, 27.06.2019 00:30, u8p4

Acar moving at a velocity of 20 m/s (at t = 0 sec) acquires a velocity of 40m/s. if the acceleration of the car is 4 m/s2, calculate (i) time taken by the car to acquire the velocity of 40m/sec. (ii) distance travelled by the car for attaining the velocity of 40m/sec.

answer
Answers: 1

Other questions on the subject: Physics

image
Physics, 22.06.2019 05:20, cwsmith8026
Very large accelerations can injure the body, especially if they last for a considerable length of time. one model used to gauge the likelihood of injury is the severity index ( ), defined as =/ . in the expression, is the duration of the accleration, but is not equal to the acceleration. rather, is a dimensionless constant that = the number of multiples of that the acceleration is equal to. in one set of studies of rear-end collisions, a person's velocity increases by 13.7 km/h with an acceleration of 36.0 m/s2 . let the + direction point in the direction the car is traveling. what is the severity index for the collision?
Answers: 1
image
Physics, 22.06.2019 05:30, keylor97
Utah's great salt lake has an average salinity seven times higher than that of the oceans. very few multicellular organisms live in this harsh environment. an example is the brine shrimp, which must devote a large portion of its metabolic energy to osmoregulation. these brine shrimp must available hint(s)utah's great salt lake has an average salinity seven times higher than that of the oceans. very few multicellular organisms live in this harsh environment. an example is the brine shrimp, which must devote a large portion of its metabolic energy to osmoregulation. these brine shrimp must pump water back into their cells to counter its loss due to osmosisactively pump water back out of their cells to counter its inflow due to osmosissynthesize membranes that are impermeable to substances that upset osmotic balanceactively pump salt back out of their cells to counter its inflow due to osmosis
Answers: 3
image
Physics, 22.06.2019 06:00, jagmeetcheema
The frequency of vibrations of a vibrating violin string is given by f = 1 2l t ρ where l is the length of the string, t is its tension, and ρ is its linear density.† (a) find the rate of change of the frequency with respect to the following. (i) the length (when t and ρ are constant) (ii) the tension (when l and ρ are constant) (iii) the linear density (when l and t are constant) (b) the pitch of a note (how high or low the note sounds) is determined by the frequency f. (the higher the frequency, the higher the pitch.) use the signs of the derivatives in part (a) to determine what happens to the pitch of a note for the following. (i) when the effective length of a string is decreased by placing a finger on the string so a shorter portion of the string vibrates df dl 0 and l is ⇒ f is ⇒ (ii) when the tension is increased by turning a tuning peg df dt 0 and t is ⇒ f is ⇒ (iii) when the linear density is increased by switching to another string df dρ 0 and ρ is ⇒ f is ⇒
Answers: 3
image
Physics, 22.06.2019 19:30, cierraandgarett8950
The ability to make things happen is also called a. heat b. force c. matter d. energy
Answers: 1
Do you know the correct answer?
Acar moving at a velocity of 20 m/s (at t = 0 sec) acquires a velocity of 40m/s. if the acceleration...

Questions in other subjects:

Konu
Physics, 24.09.2019 08:30