Engineering
Engineering, 03.02.2022 23:20, bsimon0129

A particle in an experimental apparatus has a velocity given by v=k√s, where v is in millimeters per second, the position s is millimeters, and the constant k = 0.32 mm1/2s-1. If the particle has a velocity v0 = 6 mm/s at t = 0, determine the particle position, velocity, and acceleration as functions of time. To check your work, evalutate the time t, the position s, and the acceleration a of the particle when the velocity reaches 24 mm/s.

answer
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 14:10, BardiFan
Amass of m 1.5 kg of steam is contained in a closed rigid container. initially the pressure and temperature of the steam are: p 1.5 mpa and t 240°c (superheated state), respectively. then the temperature drops to t2= 100°c as the result of heat transfer to the surroundings. determine: a) quality of the steam at the end of the process, b) heat transfer with the surroundings. for: p1.5 mpa and t 240°c: enthalpy of superheated vapour is 2900 kj/kg, specific volume of superheated vapour is 0. 1483 m/kg, while for t 100°c: enthalpy of saturated liquid water is 419kj/kg, specific volume of saturated liquid water is 0.001043m/kg, enthalpy of saturated vapour is 2676 kj/kg, specific volume of saturated vapour is 1.672 m/kg and pressure is 0.1 mpa.
Answers: 3
image
Engineering, 03.07.2019 15:10, margaret1758
If you were designing a bumper for a car, would you prefer it to exhibit elastic or plastic deformation? why? consider the functions of a bumper in both a minor "fender-bender" and a major collision.
Answers: 1
image
Engineering, 04.07.2019 18:10, koolgurl2003
Apump is used to circulate hot water in a home heating system. water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. the inlet pressure and temperature are 14.7 lbf/in.2, and 180°f, respectively; at the exit the pressure is 60 lbf/in.2 the pump requires 1/15 hp of power input. water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 btu/lb or. neglecting kinetic and potential energy effects, determine the temperature change, in °r, as the water flows through the pump.
Answers: 1
image
Engineering, 04.07.2019 18:10, colin774
The higher the astm grain size number, the finer the gran is. a)-true b)-false
Answers: 2
Do you know the correct answer?
A particle in an experimental apparatus has a velocity given by v=k√s, where v is in millimeters per...

Questions in other subjects:

Konu
Social Studies, 04.07.2019 05:00