Engineering
Engineering, 20.10.2021 14:10, carrietaylor234

The heat transfer coefficient for air flowing over a sphere is to be determined by observing the temperature-time history of a sphere fabricated from pure copper. The sphere, which is 12.7 mm in diameter, is at 66 °C before it is inserted into an air-stream having a temperature of 27 °C. A thermocouple on the outer surface of the sphere indicates 55 °C69 seconds after the sphere is inserted in the air stream. Assume and then justify that the sphere behaves as a space-wise isothermal object and calculate the heat transfer coefficient.

answer
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 15:10, breannaasmith1122
Two flowing streams of argon gas are adiabatically mixed to form a single flow/stream. one stream is 1.5 kg/s at 400 kpa and 200 c while the second stream is 2kg/s at 500 kpa and 100 ? . it is stated that the exit state of the mixed single flow of argon gas is 150 c and 300 kpa. assuming there is no work output or input during the mixing process, does this process violate either the first or the second law or both? explain and state all your assumptions.
Answers: 1
image
Engineering, 04.07.2019 18:10, sarahgrindstaff123
Afluid flows with a velocity field given by v=(x/t)i.. determine the local and convective accelerations when x=3 and t=1.
Answers: 2
image
Engineering, 04.07.2019 18:10, katelynn73
Atmospheric air has a temperature (dry bulb) of 80° f and a wet bulb temperature of 60° f when the barometric pressure is 14.696 psia. determine the specific humidity, grains/lb dry air. a. 11.4 c. 55.8 d. 22.5 b. 44.1
Answers: 1
image
Engineering, 04.07.2019 18:20, hayleymckee
Steam enters a converging nozzle at 3.0 mpa and 500°c with a at 1.8 mpa. for a nozzle exit area of 32 cm2, determine the exit velocity, mass flow rate, and exit mach number if the nozzle: negligible velocity, and it exits (a) is isentropic (b) has an efficiency of 94 percent
Answers: 2
Do you know the correct answer?
The heat transfer coefficient for air flowing over a sphere is to be determined by observing the tem...

Questions in other subjects: