Engineering
Engineering, 23.08.2021 22:40, electrofy456

Argon enters a nozzle operating at steady state at 1300 K, 360 kPa with a velocity of 10 m/s and exits the nozzle at 900 K, 130 kPa. Stray heat transfer can be ignored. Modeling argon as an ideal gas with k 1.67, determine (a) The velocity at the exit, in m/s, and
(b) The rate of exergy destruction, in kJ per kg of argon flowing. Let T0 = 293 K, p 0 = 1 bar.

answer
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, winterblanco
The higher the astm grain-size number, the coarser the grain is. a)-true b)-false
Answers: 3
image
Engineering, 04.07.2019 18:20, samueltaye
Modern high speed trains do not have perpendicular expansion gaps where rails are joined end-to-end any more they are mostly welded together but what might happen if there was a spell of particularly hot weather that causes inspection of the tracks?
Answers: 1
image
Engineering, 04.07.2019 19:10, 592400014353
For a process taking place in a closed system containing gas, the volume and pressure relationship is pvi-constant. -1.5 bar, the process starts with initial conditions, pi = =0.03 m3 and ends with final volume, v2-0.05 m3 determine the work done by the gas.
Answers: 2
image
Engineering, 04.07.2019 19:20, rida10309
At steady state, air at 200 kpa, 325 k, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. the inlet cross-sectional area is 6 cm2. at the duct exit, the pressure of the air is 100 kpa and the velocity is 250 m/s. neglecting potential energy effects and modeling air as an 1.008 kj/kg k, determine ideal gas with constant cp = (a) the velocity of the air at the inlet, in m/s. (b) the temperature of the air at the exit, in k. (c) the exit cross-sectional area, in cm2
Answers: 2
Do you know the correct answer?
Argon enters a nozzle operating at steady state at 1300 K, 360 kPa with a velocity of 10 m/s and exi...

Questions in other subjects:

Konu
Mathematics, 05.03.2020 07:41