Engineering
Engineering, 02.12.2020 21:10, thickness7699

Drop your class zoom codes and passwords

answer
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, meganwintergirl
Afour cylinder four-stroke in-line engine has a stroke of 160mm, connecting rod length of 150mm, a reciprocating mass of 3kg and its firing order is 1-3-4-2. the spacing between cylinders is 100mm. i. show that the engine is in balance with regard to the primary inertia forces and primary 3. a and secondary inertia couples. li determine the out of balance secondary inertia force ii. propose ways of balancing this out of balance force and discuss the challenges that will arise
Answers: 3
image
Engineering, 04.07.2019 18:10, caitlynnpatton1208
Water in a partially filled large tank is to be supplied to the roof top, which is 8 m above the water level in the tank, through a 2.2-cm-internal-diameter pipe by maintaining a constant air pressure of 300 kpa (gage) in the tank. if the head loss in the piping is 2 m of water, determine the discharge rate of the supply of water to the roof top in liters per second.
Answers: 3
image
Engineering, 04.07.2019 19:10, nida7864
An engine, weighing 3000 n, is supported on a pedestal mount. it has been observed that the engine induces vibration into the surrounding area through its pedestal at the maximum operating speed. determine the stiffness of the dynamic vibration absorber spring in (n/m) that will reduce the vibration when mounted on the pedestal. the magnitude of the exciting force is 250 n, and the amplitude of motion of the auxiliary mass is to be limited to 2 mm note: in this question type-in right numbers, no decimals, no fractions, no unit. approximate to right number if needed
Answers: 3
image
Engineering, 06.07.2019 02:30, jayjay5246
Air (c-1.006 kj/kg. k, r-0.287 kj/kg. k) enters a nozzle steadily at 280 kpa and 77°c with a velocity of 50 m/s and exits at 85 kpa and 320 m/s. the heat losses from the nozzle to the surrounding medium at 20°c are estimated to be 3.2 kj/kg. determine (a) the exit temperature and (b) the total entropy change for this process. solve this problem using constant specific heats.
Answers: 1
Do you know the correct answer?
Drop your class zoom codes and passwords...

Questions in other subjects:

Konu
Mathematics, 02.12.2021 18:00
Konu
Mathematics, 02.12.2021 18:00