Engineering
Engineering, 11.11.2020 18:10, bugbug89

At low to moderate pressures, the equilibrium state of the water-gas shift reaction CO + H2O > CO, + H2 is approximately described by the relation 1. K (T) = 0.0247 expl 4020/ T(K)1 where T is the reactor temperature, Ke is the reaction equilibrium constant, and y, is the mole fraction of species i in the reactor contents at equilibrium The feed to a batch shift reactor contains 20.0 mole% CO, 10.0% CO2, 40.0% water, and the balance an inert gas. The reactor is maintained at T-1123K (a) Assume a basis of 1 mol feed and draw and label a flowchart. Carry out a degree-of-freedom analysis of the reactor based on extents of reaction and use it to prove that you have enough information to calculate the composition of the reaction mixture at equilibrium. Do no calculations. (b) Calculate the total moles of gas in the reactor at equilibrium (if it takes you more than 5 seconds you're missing the point) and then the equilibrium mole fraction of hydrogen in the product (Suggestion: Begin by writing expressions for the moles of each species in the product gas in terms of the extent of reaction, and then write expressions for the species mole fractions.) (c) Suppose a gas sample is drawn from the reactor and analyzed shortly after startup and the mole fraction of hydrogen is significantly different from the calculated value. Assuming that no calculation mistakes or measurement errors have been made, what is a likely explanation for the discrepancy between the calculated and measured hydrogen yields? (d) Write a spreadsheet to take as input the reactor temperature and the feed component mole fractions Xco , XH20, and Xcoz (assume no hydrogen is fed) and to calculate the mole fraction yH2 in the product gas when equilibrium is reached. The spreadsheet column headings should be x(CO) x(H20) x(CO2) Ke y(H2) Columns between Ke and y(H2) may contain intermediate quantities in the calculation of yH2. First test your program for the conditions of Part (a) and verify that it is correct. Then try a variety of values of the input variables and draw conclusions about the conditions (reactor temperature and feed composition) that maximize the equilibrium yield of hydrogen.

answer
Answers: 2

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 14:10, volleyballfun24
If the thermal strain developed in polyimide film during deposition is given as 0.0044. assume room temperature is kept at 17.3 c, and thermal coefficient of expansion for the film and the substrate are 54 x 10^-6c^-1 and 3.3 x 10^-6c^-1respectively. calculate the deposition temperature.
Answers: 3
image
Engineering, 04.07.2019 18:10, danksans7011
The mass flow rate of the fluid remains constant in all steady flow process. a)- true b)- false
Answers: 1
image
Engineering, 04.07.2019 18:10, abdirahmansoloman
Air is to be cooled in the evaporator section of a refrigerator by passing it over a bank of 0.8-cm-outer-diameter and 0.4-m-long tubes inside which the refrigerant is evaporating at -20°c. air approaches the tube bank in the normal direction at 0°c and 1 atm with a mean velocity of 4 m/s. the tubes are arranged in-line with longitudinal and transverse pitches of sl- st 1.5 cm. there are 30 rows in the flow direction with 15 tubes in each row. determine (a) the refrigeration capacity of this system and (b) pressure drop across the tube bank. evaluate the air properties at an assumed mean temperature of -5°c and 1 atm. is this a good assumption?
Answers: 1
image
Engineering, 04.07.2019 18:10, Larkinlover703
Items are similar to the free issue items, but their access is limited. (clo5) a)-bin stock items free issue b)-bin stock controlled issue c)-critical or insurance spares d)-rebuildable spares e)-consumables
Answers: 1
Do you know the correct answer?
At low to moderate pressures, the equilibrium state of the water-gas shift reaction CO + H2O > CO...

Questions in other subjects: