Engineering
Engineering, 30.10.2020 17:20, tiffanyrhoda

H2O enters a conical nozzle, operates at a steady state, at 2 MPa, 300 oC, with the inlet velocity 30 m/s and the mass flow rate is 50 kg/s. The exit pressure and temperature are 0.6 MPa and 160 oC, respectively. Please determine the inlet radius as well as the exit flow velocity. Hint: While the effect of heat transfer can be neglected, the change of the kinetic energy should be accounted for.

answer
Answers: 2

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 14:10, makaylashrout77
Amass of 1.5 kg of air at 120 kpa and 24°c is contained in a gas-tight, frictionless piston-cylinder device. the air is now compressed to a final pressure of 720 kpa. during the process, heat is transferred from the air such that the temperature inside the cylinder remains constant. calculate the boundary work input during this process.
Answers: 2
image
Engineering, 04.07.2019 18:10, lillygrl100
For the closed feedwater heater below, feedwater enters state 3 at a pressure of 2000 psia and temperature of 420 °f at a rate of ix10 ibhr. the feedwat extracted steam enters state 1 at a pressure of 1000 psia and enthalpy of 1500 btu/lbm. the extracted er leaves at an enthalpy of 528.7 btu/lbm steam leaves as a saturated liquid. (16) a) determine the mass flow rate of the extraction steam used to heat the feedwater (10) b) determine the terminal temperature difference of the closed feedwater heater
Answers: 3
image
Engineering, 04.07.2019 18:10, kevin72836
Consider a large isothermal enclosure that is maintained at a uniform temperature of 2000 k. calculate the emissive power of the radiation that emerges from a small aperture on the enclosure surface. what is the wavelength ? , below which 10% of the emission is concentrated? what is the wavelength ? 2 above which 10% of the emission is concentrated? determine the wavelength at which maximum spectral emissive power occurs. what is the irradiation incident on a small object placed inside the enclosure?
Answers: 2
image
Engineering, 04.07.2019 18:10, Tyrant4life
Draw the engineering stress-strain curve for (a) bcc; (b) fcc metals and mark important points.
Answers: 1
Do you know the correct answer?
H2O enters a conical nozzle, operates at a steady state, at 2 MPa, 300 oC, with the inlet velocity 3...

Questions in other subjects:

Konu
Mathematics, 04.03.2021 18:40
Konu
Chemistry, 04.03.2021 18:40
Konu
Mathematics, 04.03.2021 18:40
Konu
Mathematics, 04.03.2021 18:40
Konu
Mathematics, 04.03.2021 18:40
Konu
Mathematics, 04.03.2021 18:40