Engineering
Engineering, 21.07.2020 14:01, faithandchris2101732

An ideal Diesel cycle has a compression ratio of 18 and a cutoff ratio of 1.5. Determine the maximum air temperature and the rate of heat addition to this cycle when it produces 150 hp of power, the cycle is repeated 1200 times per minute, and the state of the air at the beginning of the compression is 95 kPa and 17°C. Use constant specific heats at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg·K, cv = 0.718 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4.

answer
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, settasav9641
Abrake has a normal braking torque of 2.8 kip in and heat-dissipating cast-iron surfaces whose mass is 40 lbm. suppose a load is brought to rest in 8.0 s from an initial angular speed of 1600 rev/min using the normal braking torque; estimate the temperature rise of the heat dissipating surfaces.
Answers: 3
image
Engineering, 04.07.2019 18:10, dval1146
You are making beer. the first step is filling the glass carboy with the liquid wort. the internal diameter of the carboy is 15 in., and you wish to fill it up to a depth of 2 ft. if your wort is drawn from the kettle using a siphon process that flows at 3 gpm, how long will it take to fill?
Answers: 1
image
Engineering, 04.07.2019 18:20, annette211pdd8v9
For a gate width of 2 m into the paper, determine the force required to hold the gate abc at its location.
Answers: 1
image
Engineering, 04.07.2019 19:10, nayi2002
The short distance from the objective lens to the object causes problems at high magnification. which of the following is the most serious? a. cleaning the object surface b. positioning the object c. reflection from the object surface. d. illumination of the object
Answers: 1
Do you know the correct answer?
An ideal Diesel cycle has a compression ratio of 18 and a cutoff ratio of 1.5. Determine the maximum...

Questions in other subjects:

Konu
Mathematics, 03.03.2021 03:10
Konu
Mathematics, 03.03.2021 03:10