Engineering
Engineering, 05.06.2020 04:58, parislover2000

(25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinusodal force given by p(t) = P sin ωt. All positions are measured from equilibrium. Use m_1=1.5 kg, m_2=2 kg, k=7 N/m, b=3.2 (N∙s)/m, P=15 N, =12 rad/sec. Hint: first create the state space model for the system. Then use SS2TF to make the two transfer functions and then the two Bode plots (include with submission). Use the plots to find the steady-state equations.

answer
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, danksans7011
The mass flow rate of the fluid remains constant in all steady flow process. a)- true b)- false
Answers: 1
image
Engineering, 04.07.2019 18:10, hadellolo8839
Acompressor receives the shaft work to decrease the pressure of the fluid. a)- true b)- false
Answers: 3
image
Engineering, 04.07.2019 18:10, bckyanne3
Afull journal bearing has a journal diameter of 27 mm, with a unilateral tolerance of -0.028 mm. the bushing bore has a diameter of 27.028 mm and a unilateral tolerance of 0.04 mm. the l/d ratio is 0.5. the load is 1.3 kn and the journal runs at 1200 rev/min. if the average viscosity is 50 mpa-s, find the minimum film thickness, the power loss, and the side flow for the minimum clearance assembly.
Answers: 1
image
Engineering, 04.07.2019 18:10, aaliyah80
The drive force for diffusion is 7 fick's first law can be used to solve the non-steady state diffusion. a)-true b)-false
Answers: 1
Do you know the correct answer?
(25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when...

Questions in other subjects: