Engineering
Engineering, 05.06.2020 16:58, laylay120

A railroad runs form city A to city B, a distance of 800km, through mountainous terrain. The present one-way travel time (including time at intermediate yards) is 20 hours, and the rail freight rate is $20 per ton. There is a truck service that competes with the railroad, running over a roughly parallel road for approximately the same distance, at an average speed of 48km per hour and a rate of $30 per ton. A new highway is planned to replace the existing roads; it is expected that most of the traffic will be trucks (auto usage is expected to be negligible). The performance function of the new facility is t_T = t_0 + bV_T, where V_T is the flow in trucks per hour, t_0 = 10 hours, b = 0.08 hour per truck per hour. The railroad's estimate of the demand function is: V_T/V_R = a_0(t_r/t_R)^a_1 (c_T/c_R)^a_2 where t_T and t_R are the trip times (in hours) by truck and rail, respectively, c_T and c_R are the corresponding rates, V_T and V_R are the corresponding flows and a_0, a_1 and a_2 are parameters. The total demand is likely to remain constant at V_TOT = 200 tons per hour. The rail system is utilized at only a fraction of capacity, so its performance function is flat (travel time is constant, independent of volume). If a_0 = 1, a_1 = -1 and a_2 = -2, find the present flows of freight by truck and rail. Make an estimate of the equilibrium flows if the new highway were built. With the new highway built, what would the equilibrium flow be in each of the following two cases: if the railroad dropped its rate to $15 per ton? if truckers were taxed $5 per ton to help pay for the new highway?

answer
Answers: 2

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 15:10, brooklyn674
Apiston-cylinder with a volume of 0.25 m3 holds 1 kg of air (r 0.287 k/kgk) at a temperature of 100 c. heat transfer to the cylinder causes an isothermal expansion of the piston until the volume triples. how much heat is added to the piston-cylinder?
Answers: 3
image
Engineering, 03.07.2019 15:10, breannaasmith1122
Two flowing streams of argon gas are adiabatically mixed to form a single flow/stream. one stream is 1.5 kg/s at 400 kpa and 200 c while the second stream is 2kg/s at 500 kpa and 100 ? . it is stated that the exit state of the mixed single flow of argon gas is 150 c and 300 kpa. assuming there is no work output or input during the mixing process, does this process violate either the first or the second law or both? explain and state all your assumptions.
Answers: 1
image
Engineering, 04.07.2019 18:10, alyssabailey7545
Give heat transfer applications for the following, (i) gas turbines (propulsion) ) gas turbines (power generation). (iii) steam turbines. (iv) combined heat and power (chp). (v) automotive engines
Answers: 1
image
Engineering, 04.07.2019 18:20, krojas015
Asolid cylinder is concentric with a straight pipe. the cylinder is 0.5 m long and has an outside diameter of 8 cm. the pipe has an inside diameter of 8.5 cm. the annulus between the cylinder ad the pipe contains stationary oil. the oil has a specific gravity of 0.92 and a kinematic viscosity of 5.57 x 10-4 m2/s. most nearly, what is the force needed to move the cylinder along the pipe at a constant velocity of 1 m/s?
Answers: 3
Do you know the correct answer?
A railroad runs form city A to city B, a distance of 800km, through mountainous terrain. The present...

Questions in other subjects: