Engineering
Engineering, 06.05.2020 03:32, vladisking888

Water (cp = 4180 J/kg·°C) enters the 2.5 cm internal diameter tube of a double-pipe counter-flow heat exchanger at 17°C at a rate of 1.8 kg/s. Water is heated by steam condensing at 120°C (hfg = 2203 kJ/kg) in the shell. If the overall heat transfer coefficient of the heat exchanger is 700 W/m2 ·°C, determine the length of the tube required in order to heat the water to 80°C using (a) the LMTD method, and (b) the –NTU method. Answers: 129.5 m; 129.6 m

answer
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 14:10, makaylashrout77
Amass of 1.5 kg of air at 120 kpa and 24°c is contained in a gas-tight, frictionless piston-cylinder device. the air is now compressed to a final pressure of 720 kpa. during the process, heat is transferred from the air such that the temperature inside the cylinder remains constant. calculate the boundary work input during this process.
Answers: 2
image
Engineering, 03.07.2019 14:10, volleyballfun24
If the thermal strain developed in polyimide film during deposition is given as 0.0044. assume room temperature is kept at 17.3 c, and thermal coefficient of expansion for the film and the substrate are 54 x 10^-6c^-1 and 3.3 x 10^-6c^-1respectively. calculate the deposition temperature.
Answers: 3
image
Engineering, 03.07.2019 15:10, theamandawhite
Ahouse has the following electrical appliance usage (1) single 40w lamp used for 4 hours per day (2) single 60w fan used for 12 hours per day (3) single 200w refrigerator that runs 24 hours per day with compressor run 12 hours and off 12 hours find the solar power inverter size in watt with correction factor of 1.25.
Answers: 1
image
Engineering, 04.07.2019 18:10, caitlynnpatton1208
Water in a partially filled large tank is to be supplied to the roof top, which is 8 m above the water level in the tank, through a 2.2-cm-internal-diameter pipe by maintaining a constant air pressure of 300 kpa (gage) in the tank. if the head loss in the piping is 2 m of water, determine the discharge rate of the supply of water to the roof top in liters per second.
Answers: 3
Do you know the correct answer?
Water (cp = 4180 J/kg·°C) enters the 2.5 cm internal diameter tube of a double-pipe counter-flow hea...

Questions in other subjects: