Engineering
Engineering, 05.05.2020 05:45, coolcat3190

You are a meteorologist that places temperature sensors all of the world, and you set them up so that they automatically e-mail you, each day, the high temperature for that day. Unfortunately, you have forgotten whether you placed a certain sensor S in Maine or in the Sahara desert (but you are sure you placed it in one of those two places) . The probability that you placed sensor S in Maine is 5%. The probability of getting a daily high temperature of 80 degrees or more is 20% in Maine and 90% in Sahara. Assume that probability of a daily high for any day is conditionally independent of the daily high for the previous day, given the location of the sensor.

If the first e-mail you got from sensor S indicates a daily high under 80 degrees, what is the probability that the sensor is placed in Maine?

answer
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, mm016281
What difference(s) did you notice using a pneumatic circuit over hydraulic circuit. explain why the pneumatic piston stumbles when it hits an obstacle.
Answers: 2
image
Engineering, 04.07.2019 18:10, Larkinlover703
Items are similar to the free issue items, but their access is limited. (clo5) a)-bin stock items free issue b)-bin stock controlled issue c)-critical or insurance spares d)-rebuildable spares e)-consumables
Answers: 1
image
Engineering, 04.07.2019 18:20, samantha636
Avolume of 2.65 m3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 264 k, 5.6 bar. the air receives 432 kj by work from the paddle wheel. assuming the ideal gas model with cv = 0.71 kj/kg • k, determine for the air the amount of entropy produced, in kj/k
Answers: 2
image
Engineering, 04.07.2019 19:20, rida10309
At steady state, air at 200 kpa, 325 k, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. the inlet cross-sectional area is 6 cm2. at the duct exit, the pressure of the air is 100 kpa and the velocity is 250 m/s. neglecting potential energy effects and modeling air as an 1.008 kj/kg k, determine ideal gas with constant cp = (a) the velocity of the air at the inlet, in m/s. (b) the temperature of the air at the exit, in k. (c) the exit cross-sectional area, in cm2
Answers: 2
Do you know the correct answer?
You are a meteorologist that places temperature sensors all of the world, and you set them up so tha...

Questions in other subjects:

Konu
English, 22.01.2021 01:30
Konu
Engineering, 22.01.2021 01:30