Engineering
Engineering, 21.04.2020 16:55, WampWamp8751

A turbojet aircraft is flying with a velocity of 280 m/s at an altitude of 9150 m, where the ambient conditions are 32 kPa and -32C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1100 K. Air enters the compressor at a rate of 50 kg/s, and the jet fuel has a heating value of 42,700 kJ/kg. Assume constant specific heats for air at room temperature. Efficiency of the compressor is 80%, efficiency of the turbine is 85%. Assume air leaves diffuser with negligibly small velocity.
determine
(a) The velocity of the exhaust gases.
(b) The rate of fuel consumption.

answer
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, lerasteidl
Determine whether or not it is possible to compress air adiabatically from k to 140 kpa and 400 k. what is the entropy change during this process?
Answers: 3
image
Engineering, 04.07.2019 18:10, chadatkin
Which of the following ziegler nichols tuning methods the response of the controller to a step input should exhibit an s-shaped curve? a)-open loop mode b)-closed loop mode c)-both modes (open & closed) d)-none of the modes (open & closed)
Answers: 3
image
Engineering, 04.07.2019 18:20, 21megoplin
How much power could a wind turbine produce if it had the following specifications? cp = 0.45 -d=1.2kg/m3 d=50m v 5m/s
Answers: 2
image
Engineering, 04.07.2019 18:20, annette211pdd8v9
For a gate width of 2 m into the paper, determine the force required to hold the gate abc at its location.
Answers: 1
Do you know the correct answer?
A turbojet aircraft is flying with a velocity of 280 m/s at an altitude of 9150 m, where the ambient...

Questions in other subjects:

Konu
English, 09.07.2019 15:00