Engineering
Engineering, 16.04.2020 23:00, coopera1744

A completely reversible heat pump produces heat at a rate of 300 kW to warm a house maintained at 24 °C. The exterior air, which is at 7 °C, serves as the source. Calculate the rate of entropy change of the two reservoirs and determine if this heat pump satisfies the second law according to the increase of entropy principle.

answer
Answers: 2

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, ashleybaber4966
If a particle moves along a path such that r : (3 sin t) m and ? : 2t rad, where t is in seconds. what is the particle's acceleration in m/s in 4 seconds? a)- 16.43 b)- 16.29 c)- 15.21 d)- 13.79
Answers: 1
image
Engineering, 04.07.2019 18:20, cxttiemsp021
Atank with constant volume contains 2.27 kg of a mixture of water phases (liquid-vapor). in the initial state the temperature and the quality are 127 °c and 0.6, respectively. the mixture is heated until the temperature of 160 oc is reached. illustrate the process in a t-v diagram. then, determine (1) the mass of the vapor in kg at the initial state, (2) the final pressure in kpa.
Answers: 3
image
Engineering, 04.07.2019 19:10, Calliedevore
The proportional limit is always greater than the yield strength for a material. a)-trune b)- false
Answers: 3
image
Engineering, 06.07.2019 02:30, emiller6462
Plot schematically the tensile stress versus strain curves for a typical thermoplastic material at a temperature below its glass transition temperature (tg and at a temperature above its tg, respectively. do the same for a typical thermosetting material. list in a table any differences or similarities between the two materials at t> tg and t < tg, respectively, and relate them to the structures of the two types of polymers
Answers: 3
Do you know the correct answer?
A completely reversible heat pump produces heat at a rate of 300 kW to warm a house maintained at 24...

Questions in other subjects:

Konu
Mathematics, 03.09.2021 14:00