Engineering
Engineering, 25.03.2020 17:05, alexam2007

In fully-developed laminar pipe flow, consider the rate of work done on an annulus of thickness dr (hint: consider, for each face of the annulus, rate of work = power = force × velocity).

(i) Find an expression for the power (per unit volume) dissipated by the flow in the fluid annulus, and show that it is equal to µ(du/dr)

(ii) By using u(r) from 3(ii) above, and integrating this expression, show that the power dissipated across a length of pipe is Q∆P

answer
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, Fahaddie
The thermal expansion or contraction of a given metal is a function of the f a)-density b)-initial temperature c)- temperature difference d)- linear coefficient of thermal expansion e)- final temperature f)- original length
Answers: 2
image
Engineering, 04.07.2019 18:10, dval1146
You are making beer. the first step is filling the glass carboy with the liquid wort. the internal diameter of the carboy is 15 in., and you wish to fill it up to a depth of 2 ft. if your wort is drawn from the kettle using a siphon process that flows at 3 gpm, how long will it take to fill?
Answers: 1
image
Engineering, 04.07.2019 18:10, aliopqwas
Condition monitoring is a major component of. (clo4) a)- predictive maintenance. b)-preventive maintenance c)-proactive maintenance d)-reactive maintenance.
Answers: 1
image
Engineering, 04.07.2019 18:10, 0436500
Aturning operation is performed with following conditions: rake angle of 12°, a feed of 0.35 mm/rev, and a depth of cut of 1.1 mm. the work piece is aluminum alloy 6061 with t6 heat treatment (a16061-t6). the resultant chip thickness was measured to be 1.0 mm. estimate the cutting force, fc. use shear stress of 207 mpa and coefficient of friction on the tool face of 0.6.
Answers: 1
Do you know the correct answer?
In fully-developed laminar pipe flow, consider the rate of work done on an annulus of thickness dr (...

Questions in other subjects: