Engineering
Engineering, 06.03.2020 02:09, autumnstalvey67

A sag curve and crest curve connect a 3.5% tangent section of highway (to the west) with a +2.5% tangent section of highway (to the east). The +2.5% tangent section is at a higher elevation than the 3.5% tangent section. The two tangent sections are separated by 1150 ft of horizontal distance. If the design speed of the curves is 50 mi/h, what is the common grade between the sag and crest curves (G2 of sag and G1 of crest, from west to east), and what is the elevation difference between the PVCs and PVTc?

answer
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, settasav9641
Abrake has a normal braking torque of 2.8 kip in and heat-dissipating cast-iron surfaces whose mass is 40 lbm. suppose a load is brought to rest in 8.0 s from an initial angular speed of 1600 rev/min using the normal braking torque; estimate the temperature rise of the heat dissipating surfaces.
Answers: 3
image
Engineering, 04.07.2019 18:10, niicoleassssssf
Aflywheel accelerates for 5 seconds at 2 rad/s2 from a speed of 20 rpm. determine the total number of revolutions of the flywheel during the period of its acceleration. a.5.65 b.8.43 c. 723 d.6.86
Answers: 2
image
Engineering, 04.07.2019 18:20, dlr1628
Acertain flow of air (at stp) has a velocity distribution given by v i (in ft/s). if this flow is going through a 4 ft square area in the yz-plane (centered at the origin), what is the mass flow rate (in lbm/s)?
Answers: 2
image
Engineering, 04.07.2019 19:10, Lexi5170
A)-explain briefly the importance of standards in engineering design. b)- what is patent? c)-explain the relationship between these standards: b. s. and b. s.en d)- in engineering design concepts, types of loads and how they act are important factors. explain.
Answers: 3
Do you know the correct answer?
A sag curve and crest curve connect a 3.5% tangent section of highway (to the west) with a +2.5% tan...

Questions in other subjects:

Konu
Mathematics, 28.10.2020 19:30
Konu
Mathematics, 28.10.2020 19:30