Engineering
Engineering, 21.02.2020 18:53, tavidallaz5988

A calculator is required to obtain the final answer on this question. A solid metal sphere at room temperature 20oC is dropped into a container of boiling water (100oC). If the temperature of the sphere increases 10o in 3 seconds, find the temperature of the ball after 9 seconds in the boiling water. (Assume the sphere obeys Newton's Law of Cooling.)

answer
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:10, keigleyhannah30
Aplate clutch has a single pair of mating friction surfaces 250-mm od by 175-mm id. the mean value of the coefficient of friction is 0.30, and the actuating force is 4 kn. a) find the maximum pressure and the torque capacity using the uniform-wear model. b) find the maximum pressure and the torque capacity using the uniform-pressure model.
Answers: 3
image
Engineering, 04.07.2019 18:10, agpraga23ovv65c
Carbon dioxide gas expands isotherm a turbine from 1 mpa, 500 k at 200 kpa. assuming the ideal gas model and neglecting the kinetic and potential energies, determine the change in entropy, heat transfer and work for each kilogram of co2.
Answers: 2
image
Engineering, 04.07.2019 18:10, wyattlb97
Water at the rate of 1 kg/s is forced through a tube with a 2.5 cm inner diameter. the inlet water temperature is 15°c, and the outlet water temperature is 50°c. the tube wall temperature is 14°c higher than the local water temperature all along the length of the tube. what is the length of the tube?
Answers: 3
image
Engineering, 04.07.2019 18:20, samantha636
Avolume of 2.65 m3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 264 k, 5.6 bar. the air receives 432 kj by work from the paddle wheel. assuming the ideal gas model with cv = 0.71 kj/kg • k, determine for the air the amount of entropy produced, in kj/k
Answers: 2
Do you know the correct answer?
A calculator is required to obtain the final answer on this question. A solid metal sphere at room t...

Questions in other subjects: