Engineering
Engineering, 30.11.2019 03:31, ninaaforever

Liquid ammonia at −20°c is flowing through a 17-m-long section of a 5-mm-diameter copper tube at a rate of 0.09 kg/s. determine the pressure drop, the head loss, and the pumping power required to overcome the frictional losses in the tube. the density and dynamic viscosity of liquid ammonia at –20°c are rho

answer
Answers: 1

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 14:10, BardiFan
Amass of m 1.5 kg of steam is contained in a closed rigid container. initially the pressure and temperature of the steam are: p 1.5 mpa and t 240°c (superheated state), respectively. then the temperature drops to t2= 100°c as the result of heat transfer to the surroundings. determine: a) quality of the steam at the end of the process, b) heat transfer with the surroundings. for: p1.5 mpa and t 240°c: enthalpy of superheated vapour is 2900 kj/kg, specific volume of superheated vapour is 0. 1483 m/kg, while for t 100°c: enthalpy of saturated liquid water is 419kj/kg, specific volume of saturated liquid water is 0.001043m/kg, enthalpy of saturated vapour is 2676 kj/kg, specific volume of saturated vapour is 1.672 m/kg and pressure is 0.1 mpa.
Answers: 3
image
Engineering, 04.07.2019 18:10, ahmedeldyame
Aloaded platform of total mass 500 kg is supported by a dashpot and by a set of springs of effective stiffness 72 kn/m. it is observed that when the platform is depressed through a distance x = 12.5 cm below its equilibrium position and then released without any initial velocity; it reaches its equilibrium position in the shortest possible time without overshoot. find the position and velocity of the loaded platform 0.10 sec. after its release. if a further load of 400 kg is added to the platform, find, i) the frequency of damped vibrations, and i) the amplitude of vibration after 2 complete oscillations, given that the initial amplitude is 15 cm.
Answers: 1
image
Engineering, 04.07.2019 18:20, cxttiemsp021
Atank with constant volume contains 2.27 kg of a mixture of water phases (liquid-vapor). in the initial state the temperature and the quality are 127 °c and 0.6, respectively. the mixture is heated until the temperature of 160 oc is reached. illustrate the process in a t-v diagram. then, determine (1) the mass of the vapor in kg at the initial state, (2) the final pressure in kpa.
Answers: 3
image
Engineering, 04.07.2019 18:20, AnonymousLizard52303
A2-m rigid tank initially contains saturated water vapor at 100 kpa. the tank is connected to a supply line through a valve. steam is flowing in the supply line at 600 kpa and 300 c. the valve is opened, and steam is allowed to enter the tank until the pressure in the tank reaches the line pressure, at which point the valve is closed. a thermometer placed in the tank indicates that the temperature at the final state is 200°c. determine (a) the mass of steam that has entered the tank (b) the amount of heat transfer.
Answers: 3
Do you know the correct answer?
Liquid ammonia at −20°c is flowing through a 17-m-long section of a 5-mm-diameter copper tube at a r...

Questions in other subjects: