Engineering
Engineering, 28.11.2019 03:31, okurrrr

Consider a counterflow heat exchanger that must cool 3000 kg/h of mercury from 150of to 128of. the coolant is 1000 kg/h of water, supplied at 70of. if u is 300 w/m2k, complete the design by determining reasoanble value for the area and the exit-water temperature.

answer
Answers: 3

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 15:10, brooklyn674
Apiston-cylinder with a volume of 0.25 m3 holds 1 kg of air (r 0.287 k/kgk) at a temperature of 100 c. heat transfer to the cylinder causes an isothermal expansion of the piston until the volume triples. how much heat is added to the piston-cylinder?
Answers: 3
image
Engineering, 03.07.2019 23:20, abbz13
Two technicians are discussing the intake air temperature (iat) sensor. technician a says that the computer uses the iat sensor as a backup to the engine coolant temperature (ect) sensor. technician b says that the powertrain control module (pcm) will subtract the calculated amount of fuel if the air measures hot. who is correct
Answers: 3
image
Engineering, 04.07.2019 18:10, hadellolo8839
Acompressor receives the shaft work to decrease the pressure of the fluid. a)- true b)- false
Answers: 3
image
Engineering, 04.07.2019 18:10, lillygrl100
For the closed feedwater heater below, feedwater enters state 3 at a pressure of 2000 psia and temperature of 420 Ā°f at a rate of ix10 ibhr. the feedwat extracted steam enters state 1 at a pressure of 1000 psia and enthalpy of 1500 btu/lbm. the extracted er leaves at an enthalpy of 528.7 btu/lbm steam leaves as a saturated liquid. (16) a) determine the mass flow rate of the extraction steam used to heat the feedwater (10) b) determine the terminal temperature difference of the closed feedwater heater
Answers: 3
Do you know the correct answer?
Consider a counterflow heat exchanger that must cool 3000 kg/h of mercury from 150of to 128of. the c...

Questions in other subjects: