Engineering
Engineering, 13.09.2019 22:30, urstruulyemily

Why is free hand skecthing is important to understand.

answer
Answers: 2

Other questions on the subject: Engineering

image
Engineering, 04.07.2019 18:20, safiyabrowne7594
Ahe-xe mixture containing a 0.75 mole fraction of helium is used for cooling electronics in an avionics application. at a temperature of 300 k and atmospheric pressure, calculate the mass fraction of helium and the mass density, molar concentration and molecular weight of the mixture. if the cooling capacity is 10 l, what is the mass of the coolant?
Answers: 3
image
Engineering, 04.07.2019 19:10, pedropaulofpedrosapp
Tom is having a problem with his washing machine. he notices that the machine vibrates violently at a frequency of 1500 rpm due to an unknown rotating unbalance. the machine is mounted on 4 springs each having a stiffness of 10 kn/m. tom wishes to add an undamped vibration absorber attached by a spring under the machine the machine working frequency ranges between 800 rpm to 2000 rpm and its total mass while loaded is assumed to be 80 kg a) what should be the mass of the absorber added to the machine so that the natural frequency falls outside the working range? b) after a first trial of an absorber using a mass of 35 kg, the amplitude of the oscillation was found to be 10 cm. what is the value of the rotating unbalance? c) using me-3.5 kg. m, find the optimal absorber (by minimizing its mass). what would be the amplitude of the oscillation of the absorber?
Answers: 3
image
Engineering, 04.07.2019 19:20, rida10309
At steady state, air at 200 kpa, 325 k, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. the inlet cross-sectional area is 6 cm2. at the duct exit, the pressure of the air is 100 kpa and the velocity is 250 m/s. neglecting potential energy effects and modeling air as an 1.008 kj/kg k, determine ideal gas with constant cp = (a) the velocity of the air at the inlet, in m/s. (b) the temperature of the air at the exit, in k. (c) the exit cross-sectional area, in cm2
Answers: 2
image
Engineering, 04.07.2019 19:20, horsedoggal1234
Consider airflow over a flat plate of length l = 1.5 m under conditions for which transition occurs at le = 0.9 m based on the critical reynolds number, re, e = 5 x 10. evaluating the thermophysical properties of air at 400 k, determine the air velocity. (hint: use the tables to find the properties of air)
Answers: 3
Do you know the correct answer?
Why is free hand skecthing is important to understand....

Questions in other subjects:

Konu
Mathematics, 10.01.2020 15:31
Konu
Mathematics, 10.01.2020 15:31