Engineering
Engineering, 04.07.2019 19:20, anggar20

Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 k, 1 bar, with a volumetric flow rate of 0.25 m°/s, and exits at 325 k, 0.95 bar. the flow area is 0.04 m2. assuming the ideal gas model with k = 1.4 for the air, determine (a) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer, in kw flow rate, in kg/s, (b) the mass kg 0.3

answer
Answers: 2

Other questions on the subject: Engineering

image
Engineering, 03.07.2019 14:10, kayabwaller4589
When at a point two solid phase changes to one solid phase on cooling then it is known as a) eutectoid point b) eutectic point c) peritectic point d) peritectoid point
Answers: 3
image
Engineering, 04.07.2019 18:10, bunnles
During a steady flow process, the change of energy with respect to time is zero. a)- true b)- false
Answers: 2
image
Engineering, 04.07.2019 18:10, agpraga23ovv65c
Carbon dioxide gas expands isotherm a turbine from 1 mpa, 500 k at 200 kpa. assuming the ideal gas model and neglecting the kinetic and potential energies, determine the change in entropy, heat transfer and work for each kilogram of co2.
Answers: 2
image
Engineering, 04.07.2019 18:10, mamasbug4285
An air compression refrigeration system is to have an air pressure of 100 psia in the brine tank and an allowable air temperature increase of 60°f for standard vapor compression cycle temperatures of 77 f entering the expansion cylinder and 14 f entering the compression cylinder, calculate the coefficient of performance a. 2.5 b 3.3 c. 4.0 d. 5.0
Answers: 3
Do you know the correct answer?
Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 k, 1 bar, w...

Questions in other subjects:

Konu
Mathematics, 30.08.2020 02:01
Konu
Social Studies, 30.08.2020 02:01